Genetik

 Vererbung Zufall mit System

  Genetik 1+2     Genetik 3+4     Genetik 5+6     Genetik 7+8     Genetik 9+10     Genetik 11+12     Genetik 13+14     Genetik 17+18 

Verzeichnis:

Teil 15

Wir sind immer noch nicht ganz bei den Schildpatt-Katern und noch ein ganzes Stück von den "fruchtbaren" Ausnahmen entfernt. Sie fragen sich sicherlich, warum wir uns gerade mit der Farbe Orange und mit der Zeichnung Schildpatt so ausführlich beschäftigen und dazu auch noch auf die Ausnahmen so viel Wert legen. Ein Sprichwort sagt: "Ausnahmen bestätigen die Regel". Für die Naturwissenschaften, also auch für die Biologie und insbesondere die Genetik, läßt sich diese Aussage noch viel weiter fassen. Erst durch Ausnahmen wird der Blick auf den tieferen Sinn der Regelmäßigkeit entschleiert. Und oft genug sind es gerade die Ausnahmen, die uns den Weg weisen, eine Regel zu suchen. Deshalb bleiben wir unbeirrt auf der Suche nach dem Schildpatt-Kater und eröffnen uns damit den Horizont, auch andere Abweichungen von den Regeln der Vererbung richtig zu erkennen und zu bewerten.

Die wichtigsten Vorarbeiten haben wir schon erledigt. Als Mutter, bei der in der Meiose-I ein Nondisjunction stattfinden soll, nehmen wir natürlich eine Schildpatt-Katze (Ox/ox). Warum das natürlich ist, das können Sie leicht selbst herausfinden. Versuchen Sie mit einer "roten" oder "schwarzen" Katze (gleiche Definition wie in Teil 13, Heft 2/94) dieselben Eizellentypen durch Nondisjunction zu erreichen, wie in nachfolgendem Schema angegeben. Das wird nicht gehen. Aber die eine Hälfte genau dieser Eizellen-Typen bilden die Grundlage für die Entwicklung eines Schildpatt-Katers.

Nondisjunction in der Meiose I und Befruchtung mit normalen Spermien eines nicht-orange Katers
(Bild rechts)

.9xDa haben wir an zweiter Position den Kater in Schildpatt. Sein Genotyp verheißt allerdings nichts Gutes, er wird alle Folgen des Klinefelter-Syndroms tragen und damit vor allem unfruchtbar sein. Aber lassen wir das erst einmal und schauen danach, mit welcher Wahrscheinlichkeit ein solches Ereignis denn eintreten wird. Dazu braucht es nicht viel Mathematik. Insgesamt zeigt nur eines unter 600 neugeborenen Kätzchen eine deutliche Chromosomenanomalie, die von einem Nondisjunction ausgeht. Und davon ist nur jedes dritte ein Kater. Oder anders ausgedrückt: Von einer Schildpatt-Katze kann man mit einer Wahrscheinlichkeit von 1:1800 einen Schildpatt-Kater als Nachkommen erwarten. Interessant ist, daß mit der gleichen Wahrscheinlichkeit immer mal wieder Katzen in schildpatt oder "schwarz" auftauchen, die sich unnormal entwickeln und unfruchtbar sind. Die Erklärung dafür ist, daß es sich um Superfemales oder Turner-Katzen handelt. Sie haben die gleiche genetische Herkunft wie der Klinefelter-Kater in Schildpatt.

Der Aberrationstyp läßt sich übrigens sehr leicht durch eine einfache Blutuntersuchung bestimmen. Katzen haben normalerweise ein Barr-Körperchen, Kater keines. Dagegen haben Schildpatt-Kater eines, Superfemales zwei und Turner-Katzen kein Barr-Körperchen. Was wir bis jetzt immer noch nicht haben, ist der fruchtbare Schildpatt-Kater. Betrachten wir noch eine andere Kreuzung: Schild-patt-Katze mit Nondisjunction und "roter" Kater.

Nondisjunction in der Meiose I und Befruchtung mit normalen Spermien eines orangen Katers
 (Bild links).

10xSie haben es sicher vorausgesehen, das Ergebnis ist fast gleich. Nur die Turner-Katze ist jetzt nicht "schwarz", sondern "rot". Auf jeden Fall wird deutlich, daß auch noch so exotische Ausnahmen die Grundregeln nicht außer Kraft setzen: Ein "rotes" Mädchen hat noch immer einen "roten" Vater und ein "schwarzes" Mädchen einen "schwarzen" Vater. Und weil X-chromosomale Aberrationen immer noch häufiger sind als autosomale Aberrationen, gibt es gerade bei "rot"- und Schildpatt-Zuchten immer wieder einmal unfruchtbare Tiere mit abnormalem Wachstum von bisher unauffälligen Eltern. Deren Herkunft können wir jetzt ganz gut nachvollziehen.

Um jetzt tatsächlich zu dem "fruchtbaren" Schildpatt-Kater zu kommen, müssen wir zu dem seltenen Fall des Nondisjunction in der Meiose den noch selteneren Fall eines Nondisjunction in der Mitose hinzufügen. Sie sehen, die Sache wird immer unwahrscheinlicher. Da es ihn aber dennoch gibt und da die Diskussion um seine Entstehung unseren Blick und unser Verständnis für die genetischen Grund-lagen schärft, lassen wir uns nicht abbringen. Die befruchtete Eizelle, aus der der Schildpatt-Klinefelter-Kater heranwächst, hat in jedem Fall den Genotyp (36 As + Oxoxy), also insgesamt 39 statt 38 Chromosomen. Was kann nun passieren? Wenn alle Mitosen normal verlaufen, dann haben wir einen unfruchtbaren Schildpatt-Kater mit allen Symptomen des Klinefelter-Syndroms.

Störungen der Mitose sind, vor allem in der Embryonalentwicklung, sehr selten. Asymmetrische Mitosen durch Nondisjunction sind jedoch bei unbalancierten Systemen wie dem Klinefelter-Syndrom häufiger als bei Tieren mit normalem Chromosomensatz. Hier ist es natürlich nicht so, daß sich gepaarte Bivalente nicht trennen, wie das in der gestörten Meiose der Fall ist. Bei der Mitose gibt es ja gar keine Homologenpaarung. Bei der Mitose werden jeweils die beiden Chromatiden eines Chromosoms voneinander getrennt und zu den beiden Zellpolen transportiert. Durch die unausgewogene Chromosomenzahl kann es passieren, daß die Trennung entweder gar nicht erfolgt und die beiden Chromatiden eines Chromosoms gemeinsam zu dem einen oder anderen Zellpol gelangen. Oder aber die Trennung der beiden Chromatiden eines Chromosoms erfolgt zu langsam, die neue Zellmembran wird zu früh eingezogen und die beiden Chromatiden bleiben dann in einer der beiden Tochterzellen liegen. In beiden Fällen bekommt eine Tochterzelle eine Chromatide zuviel, die andere eine zu wenig. Jetzt geht es ganz normal weiter. Von jeder Chromatide wird eine identische Kopie hergestellt und jedes Chromosom besteht wieder aus zwei absolut identischen Chromatiden. Das Ergebnis einer solchen asymmetrischen Mitose sind zwei Tochterzellen, die nicht nur unterschiedliche Genome enthalten, sondern die Genome der beiden Tochterzellen unterscheiden sich auch vom Genom der Ausgangszelle. Die eine Tochterzelle hat ein Chromosom weniger als die Ausgangszelle, die andere hat ein Chromosom mehr. Oder, um auf unser System zurückzukommen: Aus einer gewöhnlichen Klinefelter-Zelle (36 As + XXy) entstehen durch Nondisjunction in der Mitose eine normale Zelle (36 As + Xy) und eine andere Form der Klinefelter-Zelle (36 As + XXXy). Die normale Zelle ist sowieso lebensfähig und die beiden Klinefelter-Zellen bedingt durch den Lyon-Inaktivierungsmechanismus auch. Die eine Form hat dann ein Barr-Körperchen, die andere zwei. Allerdings ist die zweite Form deutlich weniger fertil und die von ihr abstammende Zellinie wird bald zugrunde gehen.

Wenn eine asymmetrische Mitose sehr früh in der Embryonalentwicklung passiert, dann haben wir einen sehr interessanten Kater vor uns. Er besteht nämlich aus zwei oder seltener aus drei Zelltypen: normale männliche Zellen mit dem Orange-Allel (36 As + Oxy) oder dem Nicht-Orange-Allel (36 As + oxy), Klinefelter-Zellen mit einem Barr-Körperchen (36 As + Oxoxy) und eventuell Klinefelter-Zellen mit zwei Barr-Körperchen und den Genotypen (36 As + OxOxoxy) und (36 As + Oxoxoxy). Alle Zelltypen können durch den Lyon-Inaktivierungsmechanismus zur Schildpatt-Bildung beitragen. Man nennt solche Tiere auch Mosaik, da sie aus mehreren Zelltypen "zusammengesetzt" erscheinen. Sie sind aber nicht zusammengesetzt, sondern die genetisch unterschiedlichen Bereiche sind durch asymmetrische Mitosen entstanden. Daher ist der Begriff "Chimäre" hier fehl am Platz, denn bei Chimären handelt es sich um Organismen, die durch Genmanipulation tatsächlich aus Genmaterial unterschiedlicher Herkunft meist künstlich "zusammengesetzt" sind.

11xUnd jetzt kommt der große Knalleffekt! Wenn eine normale diploide Zelle aus einer sehr frühen asymmetrischen Meiose zur Stammzelle der Keimbahn wird, dann ist ein solcher Mosaik-Kater ein fruchtbarer Schildpatt-Kater. Aber eben immer noch kein Schildpatt-Zuchtkater, denn die Spermien können ja, wie jedes andere normale Spermium auch, nur ein X-Chromosom weitergeben, das entweder die Information Orange oder Nicht-Orange tragen kann. Der fruchtbare Schildpatt-Kater vererbt also nicht anders als sein "rotes" oder "Schwarzes" Pendant.

Das dritte Beispiel in Schema 5 stellt nur der Vollständigkeit halber ein weiteres Kuriosum dar. Wenn das y-Chromosom von einem mitotischen Nondisjunction betroffen ist, dann ergibt die Blutuntersuchung nur Zellen mit jeweils einem Barr-Körperchen. Das sind nach klassischer Definition weibliche Zellen, also ein "Kater" mit weiblichen Zellen, natürlich auch unfruchtbar. Die normalen diploiden, auch genetisch weiblichen Zelle können natürlich, selbst wenn sie in die Keimbahn eingehen, auch im umgebenden "männlichen" Milieu keine Spermien bilden.

Das war der lange Weg zum Schildpatt-Kater. Aber nicht das Ergebnis ist an dieser ausführlichen Darstellung wichtig, sondern das Verständnis für außergewöhnliche Ereignisse, die in der Genetik gar nicht so selten sind. Viele unerwartete züchterische Resultate verlangen nicht nach neuen Erklärungen, sie sind nur Ausnahmen von schon vorhandenen Regeln. Wenn wir das jeweils erkennen, dann können wir uns den folgenden Satz zunutze machen: Die Ausnahmen "erklären" die Regel oft viel besser als die Regel selbst.

12x12x

 

Teil 16

Kommen wir heute zu den beiden letzten Kapiteln der Farbgenetik. Scheckung oder Weißscheckung (S) und dominantes Weiß (W) hängen zumindest von der Entstehung der Merkmalsausprägung eng zusammen. Ob dem ein genetischer Zusammenhang zugrunde liegt, wird immer noch diskutiert. Die Vererbungsregeln sind für beide Gene einfach, leider ist das Scheckungsgen in seiner Auswirkung nicht sehr zuverlässig. Da können wir uns glücklich schätzen, daß S und W so weit hinten im Alphabet stehen. Wir können also bei der Besprechung auf einige Erfahrungen über Genwirkungen und deren Unzuverlässigkeit zurückgreifen.

Das Scheckungsgen (Allele: S, s)

Der englische Name "piebald (white) spotting" und die daraus abgeleitete Bezeichnung Weißscheckung deutet auf eine immer noch nicht allgemein bekannte Tatsache hin: Das Weiß, so groß sein Anteil auch sein mag, ist nicht die Grundfarbe. Bei gescheckten Katzen können alle bisher besprochenen Farben mit und ohne Zeichnung als Grundfarben vorkommen. Und bei jeder gescheckten Katze wird sich irgendwo, auch wenn er noch so klein ist, ein "Fleck" in der Grundfarbe finden lassen, sonst wäre sie eine dominant Weiße (dazu kommen wir später) oder eine Albino-Weiße (die kennen Sie ja schon). Die Anführungszeichen stehen deshalb, weil sich der Fleck oder die Flecken bei den Schecken eigentlich auf die weißen Flächen beziehen. Auch wenn der weiße Fleck so groß ist, daß er sich auf die ganze Katze ausdehnt, es ist und bleibt ein Fleck, der durch das Allel S des Scheckungsgens hervorgerufen wird. Die mögliche Verknüpfung von Weiß mit allen anderen Farben beweist, daß das Scheckungsgen unabhängig vererbt wird.

Es ist vielleicht sogar günstiger, sich die Namen "gescheckte Katze" oder "Schecken" ganz abzugewöhnen. Bezeichnen wir sie doch ganz einfach mit ihrer Grundfarbe und fügen "mit Weiß" hinzu. Da das mutierte Allel (S) offensichtlich dominant über das Wild-Allel (s) ist, ist die Sache einfach und wir brauchen keine neuen Genotypen-Tabellen. Bei allen Farben ohne Weiß wird (s/s) angehängt, bei allen mit Weiß entweder (S/-), (S/s) oder (S/S).

Aus den "einfachen" Farben (non-Agouti) ohne und mit Verdünnung entstehen z.B. die klassischen Bicolor-Varietäten:

Bicolor schwarz-weiß
Bicolor blau-weiß
Bicolor chocolate-weiß
Bicolor lilac-weiß (lavender-weiß)
Bicolor rot-weiß
Bicolor creme-weiß


Aus den Agouti-Farben ohne und mit Tipping (Silber) entstehen die
"mit Weiß"-Varietäten. Da solche Katzen durch die Agouti- Grundfarbe mit der darüber liegenden Zeichnung in der genetischen Farbe schon zweifarbig aussehen, werden sie noch manchmal als Tricolor beschrieben, wenn Weiß dazu kommt. Das ist schlicht und einfach falsch, denn Agouti-Grundfarbe und genetische Farbe sind eigentlich nur eine Farbe. Mit Weiß sind sie dann höchstens Bicolor, aber dieser Begriff bleibt den non-Agoutis mit Weiß vorbehalten. Also nimmt man die bekannten Farb-Bezeichnungen und fügt einfach "mit Weiß" hinzu, wie z.B.:

(black)-mackerel-tabby mit Weiß
(black)-classic-tabby mit Weiß
blue-...-tabby mit Weiß
bluesilver-...-tabby mit Weiß
blue-shaded mit Weiß
u.s.w.

Aus den Schildpatt entstehen "mit Weiß" die dreifarbigen Glückskatzen. Sie sind die einzigen, die auch aus genetischer Sicht die Bezeichnung
Tricolor verdienen, denn hier kommen wirklich drei Farben zusammen: die genetische Farbe, Orange und Weiß. Einige Beispiele sind:

Schildpatt mit Weiß (= Calico)
blau-Schildpatt mit Weiß (= dilute Calico)
chocolate Schildpatt mit Weiß
lilac Schildpatt mit Weiß
u.s.w.

Bei den Bicolor- und Tricolor-Katzen soll mindestens ein Drittel und höchstens die Hälfte der Körper-fläche weiß sein (Grad 3 bis Grad 5).

22xIst der Weißanteil kleiner und bis auf ein Medaillon und einigen weißen Flecken auf dem Bauch und vielleicht einem weißen Handschuh an einer Vorderpfote reduziert (Grad 2), spricht man von einer Minimalscheckung. Dafür gibt es möglicherweise ein zweites Gen für "sehr schwaches spotting", das zwar unabhängig vererbt wird, aber mit dem Scheckungsgen interagiert. Dieses noch sehr suspekte Gen scheint semidominant mit variabler Ausprägung zu sein. Eine noch weitere Reduzierung des Weißanteils auf einen kleinen Fleck zwischen den Hinterbeinen und evtl. einen sehr kleinen Kehlfleck (zwischen Grad 1 und Grad 0) hat mit dem Scheckungsgen sicher nichts zu tun.

23x

 

 

 

 

 

 

 

Die Katzen sind genetisch ohne Weiß (s/s), diese weißen Fleckchen sind sicher polygenetisch veranlagt. Solche "Ausrutscher" treten bedauerlicherweise noch am häufigsten bei Rassen ohne anerkannte Weißscheckung auf. Daher wird der Erbgang noch lange Zeit im Dunkeln bleiben, weil natürlich kein Züchter daran interessiert ist, solche Vorfälle publik zu machen und Stammbaumforschung zu ermöglichen.

Kommen wir zum anderen Extrem. Wenn sich die weißen Flecken so weit ausbreiten, daß nur noch ein sechstel des Körpers farbig ist (Grad 6), bevorzugt am Kopf, Schwanz(spitze), evtl. an den Beinen und höchstens zwei bis vier kleinere Flächen an den Flanken (der Bauch muß rein weiß sein), dann spricht man von der Harlekin-Zeichnung.

23x2

Die Katzen sehen liebenswert und dabei schelmenhaft lustig aus, genau so wie der Arlecchino der Commedia dell'Arte, der für die Namensgebung Pate gestanden hat (Grad 7). Bleiben von der Grundfarbe nur noch zwei durch eine Blesse getrennte Flächen im Gesicht und der Schwanz von der Kruppe bis zur Spitze übrig (Grad 8), dann spricht man von der Van-Zeichnung. Der Name ist von der Türkisch-Van abgeleitet, die dieselbe Weißverteilung mit der Grundfarbe Rot hat. „Grad 9“ ist eine weitere Reduktionsvariante, die für Zucht und Ausstellung weder erwünscht noch erlaubt ist. „Grad 10“ hat mit dem Scheckungs-Gen genauso wenig zu tun wie „Grad 0“. Während man bei letzterer sicher sein kann, daß der Genotyp (s/s) ist, kann bei ersterer alles möglich sein, denn Albino-Weiß und dominantes Weiß überdecken alle möglichen Scheckungs-Allelenkombinationen (s/s, S/s, S/S).

24x

Bleibt noch die Heilige Birma als Rasse mit Weiß zu erwähnen. Die charakteristischen weißen Handschuhe an allen vier Pfoten und die weißen "Sporen" an den Hinterbeinen könnten etwas mit dem Scheckungsgen zu tun haben. Allerdings weisen Kreuzungsversuche mit einfarbigen Rassen oder Colourpoints darauf hin, daß dieses Weiß rezessiv vererbt wird. Man hat daraufhin ein separates Gen g (für glove=Handschuh) angenommen. Aber es ist auch möglich, daß g nur ein weiteres Allel von Scheckungsgen ist.

Ist es nun wirklich so einfach, daß die Allele (s/s) eine Katze ohne Weiß (Grad 0) und die Allele (S/s, S/S) eine Katze mit Weiß (Grad 1-9) bedeuten? Hier gilt ein klares ja! Wie ist es aber nun mit der Weißverteilung? Ist diese an den heterozygoten (z.B. Grad 1-4) bzw. homozygoten (z.B. Grad 5-9) Zustand gekoppelt? Hier gilt leider ein ganz eindeutiges jain!

Einerseits haben wir einen dominant-rezessiven Erbgang, andererseits gibt es die enorme Variationsbreite von Grad 1 bis Grad 9. Die Dominanz bzw. Rezessivität ergibt sich daraus, daß Eltern ohne Weiß nie weißgescheckte Nachkommen haben, wenn wir einmal von der sog. "Minimalscheckung" absehen. Wenn aber mindestens ein Elter mit Weiß ist, dann fallen in der Regel auch weißgescheckte Nachkommen. Weil eben aus Verpaarungen mit nur einem weißgescheckten Elter auch weißgescheckte Jungtiere fallen, ist die Dominanz bewiesen, denn die können nur heterozygot (S/s) sein. Die weißen Flecken sind auch epistatisch über alle Farben, sie können sowohl in den Bereichen aus der B-Serie als auch in denen von Orange liegen. Besonders pikant wird das, wenn schwarz-weiße Bicolor-Eltern plötzlich rot-weiße Nachkommen haben. Dann nämlich war ein Elterntier ein verkappter Schildpatt mit Weiß, bei dem die weißen Flecken den gesamten Orange-Anteil überdeckt haben. Dann kann man sich als Genetiker beim Züchter nur damit entschuldigen, daß Katzen-Genetik auch ohne solche "Tricks" eigentlich schon schwierig genug ist.

Die beiden Allele des Scheckungsgens verhalten sich zueinander zumindest teilweise codominant. Die Variationsbreite hängt sicher vom übrigen genetischen Hintergrund ab, folgt aber doch gewissen Regeln. So zeigen Nachkommen von gescheckten Eltern häufiger Weißanteile vom Grad 5-8, weil sich darunter natürlich auch häufiger homozygote Tiere (S/S) befinden. Wenn nur ein Elter gescheckt ist, sind alle weißgescheckten Nachkommen zwangsläufig heterozygot (S/s) und fallen gleichzeitig auch häufiger unter die Grade 2-6. Aber: Bei Tieren mit Van-Zeichnung oder Harlekin (Grad 7/8) liegt in der Regel Homozygotie vor. Aber derartige Weißverteilungen fallen auch immer wieder aus Verpaarungen zwischen Bicolor und nichtgescheckten Tieren, sind also eindeutig heterozygot. Nur eines ist beim Scheckungsgen sicher, seine enorme Variabilität! Nur durch selektive Zucht mit engen Auswahlkriterien kann der Scheckungsgrad in bestimmten Grenzen stabilisiert werden und man muß immer wieder und auch noch nach vielen Generationen der Stabilität mit "Ausrutschern" rechnen. Ich muß hier wiederholen, was ich bei den Schildpatt-Katzen schon einmal gesagt habe: "Hut ab vor der Geduld von Züchtern schöner weißgescheckter Katzen".

Aber zurück zu dem, was einigermaßen sicher ist. Auch wenn das Scheckungsgen einen noch so unberechenbaren Charakter hat, so folgt die Ausprägung doch gewissen Regeln. Zunächst einmal eine Tatsache, die vielleicht schon viel früher hätte erwähnt werden sollen. Weiß ist keine Farbe, sondern das Fehlen jeglicher Pigmentierung. Warum in manchen Hautbezirken die pigmentbildenden Zellen fehlen und damit die Haare dort ungefärbt bleiben, das erkläre ich später für die, die es ganz genau wissen wollen. Wir merken uns jetzt nur, es handelt sich um einen genetisch bedingten "Defekt" der dazu führt, daß in den betroffenen Bereichen die Haare pigmentlos, also weiß bleiben. Die Entstehung der weißen Flecken oder Flächen hat nichts mit der Bildung der Orange-Flächen bei Schildpatt zu tun, beeinflußt aber die Größe der orangen Fellpartien entscheidend. Die Ausbreitung der weißen Flächen von Grad 1 bis 9 folgt gewissen Regeln, die mit der Embryonalentwicklung zu tun haben, es handelt sich aber nicht um einen Chromosomeninaktivierungsmechanismus, wie wir ihn schon kennengelernt haben.

Die ersten Anzeichen von Scheckung treten an Bauch, Brust (Medaillon) und den Vorderpfoten auf (Grad 1). Dann kommen Nacken, Kinn, Flanken, Kopf und Hinterpfoten dazu (Grad 2-4). Schließlich fließen die weißen Flecken zusammen und die Grundfarbe wird in Spots mit abnehmender Größe aufgebrochen (Grad 4-7). Zuletzt bleibt die Grundfarbe nur noch am Kopf oder im Bereich der Ohren und immer am Schwanz oder zumindest der Schwanzspitze sichtbar (Grad 8-9).

Nun zur Embryonalentwicklung, der Grundlage für die Ausprägung der Weißscheckung und die fortschreitende Erweiterung der Weißanteile. Erinnern Sie sich an die Entstehung eines neuen Organismus von der Eizelle bis zur Hohlkugel (Teil 13)? Dann die Einfaltungen zur Organbildung. Eine der ersten Einfaltungen führt zu einem Schlauchförmigen Gebilde, dem Neuralrohr. Aus ihm entwickelt sich hauptsächlich das Nervensystem. Aber bestimmte Zellen aus dem Neuralrohr begeben sich auf Wanderschaft und sind an der Bildung ganz anderer Organe beteiligt. So auch die Melanoblasten als Vorläufer der pigmentproduzierenden Zellen der Haut. Es handelt sich dabei um wenige Zellen (ca. 34), die als primäre Melanoblasten die Neuralleiste verlassen und zur Körperoberfläche wandern. Aus ihnen entsteht durch Mitosen der Teil der Haut, in dem Pigmente gebildet werden können. Ist die Anzahl der primären Melanoblasten durch das Scheckungs-Allel (S) genetisch vermindert, werden weit von der Neuralleiste entfernte Körperregionen nicht mehr von den Melanoblasten erreicht. Es kann sich in diesen Hautbezirken kein pigmentbildendes Hautgewebe bilden, die dort wachsenden Haare bleiben farblos, also weiß. Je geringer die Anzahl der primären Melanoblasten ist, desto größer werden die weißen Flächen.

Und was ist mit der Schwanzspitze, die ja fast immer pigmentiert ist, obwohl sie doch sicherlich zu den am weitesten entfernten Körperregionen gehört? Aber die Wirbelsäule setzt sich bis zur Schwanzspitze fort und gehört eng zu den Organen des Neuralrohres. Somit liegt für die Melanoblasten der Schwanz näher als der Bauch oder die Pfoten. Auch der Bereich um die Augen und Ohren liegt für die Melanoblasten näher als z.B. der Rücken oder die Flanken, denn Teile des Auges (Netzhaut) und teile des Ohres (Schnecke, Gleichgewichtsorgan) gehören direkt zum zentralen Nervensystem.

Nun noch zur Abgrenzung vom Schildpatt einerseits und zum Einfluß auf Schildpatt andererseits. Bei der Bildung des Schildpatt-Musters haben wir es mit zwei Typen von primären Melanoblasten zu tun. Die einen (ox) bilden Melanin und damit alle Farben außer Orange. Die anderen (Ox) bilden Phäomelanin und damit Orange. Die Gesamtzahl der primären Melanoblasten ist nicht reduziert, die gesamte Hautfläche kann mit pigmentbildendem Gewebe versorgt werden. Jeder primäre Melanoblast bildet in dem von ihm besiedelten Hautbezirk durch Mitosen einen Zellklon von gleichem Differenzierungszustand (orange oder nicht-orange). Die Ausbreitung eines Klons wird durch Konkurrenz zum benachbarten Klon begrenzt. Unter dem Einfluß des Scheckungs-Alles (S) ist die Gesamtzahl der primären Melanoblasten vermindert. Nach der Wanderung liegen die Melanoblasten weit auseinander. Das Wachstum der beiden Klone Orange und Nicht-Orange wird nicht mehr durch Konkurrenz begrenzt. Jeder Klon kann sich so lange ausbreiten, wie seine Fähigkeit zur Mitose erhalten bleibt. Erst dann hört die Ausbreitung eines Klons auf. Was durch die limitierte Zellteilungsrate der Klone von pigment-bildendem Hautgewebe unbesiedelt bleibt, bleibt weiß. Bei Schildpatt mit Weiß sind daher die einheitlichen Farbflächen Orange und Nicht-Orange größer und je größer der Weißanteil, desto größer die Farbflächen

 

Zurück
Zurück
Zurück
Zurück
Zurück
Zurück
Zurück
Zurück
Zurück